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Abstract. We introduce a method for constructing a polynomial preconditioner using a nonlinear least squares
(NLLS) algorithm. We show that this polynomial-based NLLS-optimized (PBNO) preconditioner significantly im-
proves the performance of 2-D continuous Galerkin (CG) and discontinuous Galerkin (DG) fluid dynamical research
models when run in an implicit-explicit time integration mode. When employed in a serially computed Schur-
complement form of the 2-D CG model with positive definite spectrum, the PBNO preconditioner achieves greater
reductions in GMRES iterations and model wall-clock time compared to the analogous linear least-squares-derived
Chebyshev polynomial preconditioner. Whereas constructing a Chebyshev preconditioner to handle the complex
spectrum of the DG model would introduce an element of arbitrariness in selecting the appropriate convex hull,
construction of a PBNO preconditioner for the 2-D DG model utilizes precisely the same objective NLLS algorithm
as for the CG model. As in the CG model, the PBNO preconditioner achieves significant reduction in GMRES
iteration counts and model wall-clock time. Comparisons of the ability of the PBNO preconditioner to improve CG
and DG model performance when employing the Stabilized Biconjugate Gradient algorithm (BICGS) and the basic
Richardson (RICH) iteration are also included. In particular, we show that higher order PBNO preconditioning of
the Richardson iteration (which is run in a dot product free mode) makes the algorithm competitive with GMRES
and BICGS in a serial computing environment, especially when employed in a DG model. Because the NLLS-based
algorithm used to construct the PBNO preconditioner can handle both positive definite and complex spectra without
any need for algorithm modification, we suggest that the PBNO preconditioner is, for certain types of problems, an
attractive alternative to existing polynomial preconditioners based on linear least-squares methods.
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1. Introduction.

1.1. Background. In a previous paper [1] we described the development of an element-based
spectrally-optimized (EBSO) preconditioner designed to increase the efficiency of an implicit-explicit
(IMEX) 2-D CG model of the Euler equations in Schur-complement form. The usefulness of the
EBSO preconditioner was demonstrated using a rising thermal bubble (RTB) test case. The ultimate
goal of that previous work, as well as the PBNO polynomial preconditioning technique developed
herein, is eventual incorporation into CG and DG variants of the Nonhydrostatic Unified Model of
the Atmosphere (NUMA) that are currently under development for both regional and global domains
[3, 5, 4].

1.2. Paper Format. Section 2 provides an overview of the fluid dynamical modeling context
within which a preconditioner must function effectively in order to be useful for our purposes. This
section also includes an overview of the iterative solvers that we are currently evaluating in terms
of their response to the PBNO preconditioner and several comparison preconditioners. Section 3
provides some background on polynomial preconditioners and identifies two existing preconditioners
against which we will compare the PBNO preconditioner when feasible. Section 4 lays out the
mathematical development of the NLLS-based method for constructing the PBNO preconditioner.
Section 5 presents the results of PBNO preconditioner performance in CG and DG model variants
of the 2-D RTB problem in a serial computing environment. Section 6 summarizes the key results
of the paper and provides an outline of planned future work.

2. Modeling Context. The combination of the high-resolution associated with nonhydrostatic
atmospheric modeling and the large domain size associated with global models requires as many as
O(107) elements and Ng = O(109) grid points (nodes). As a result, at each time-step in the IMEX
time integration process there is a need to iteratively solve a very large, but sparse, linear system of
the form

Aqn+1 = R(qn), (2.1)
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2 L.E. Carr, C.F. Borges and F.X. Giraldo

or, using standard generic notation

Ax = b. (2.2)

In Eq. (2.1), q is the state vector, R is a right-hand side operator, and the matrix A is square,
invertible, nonsymmetric, and fixed (unless adaptive mesh refinement is used). As discussed in
[3, 5], if a Schur-complement form is derived for A, then the size of A is Ng ×Ng, but if A is left in
the non-Schur-complement form, then the size of A is 4Ng × 4Ng for 2-D modeling and 5Ng × 5Ng
for 3-D modeling.

To facilitate subsequent analysis and comparison of results it is useful to define the scaling
parameter

λmid =
|λmax|+ |λmin|

2
, (2.3)

where λmax and λmin are the eigenvalues of system matrix A with the largest and smallest moduli,
and which can be well-approximated via the Arnoldi method for a system of any size. Dividing both
sides of Eq. 2.2 by λmid results in the equivalent system

(A/λmid)x = (b/λmid), (2.4)

which we will hereafter denote more concisely by

Ãx = b̃. (2.5)

For a CG model of the RTB problem employing Schur-complement form, the spectrum of Ã is real
and fully contained within the unit disk centered at (1,0) as shown in Fig. 2.1(a). For a DG model of
the same RTB problem (for which a Schur-complement form is not presently available), the spectrum
of Ã is complex, confined to the right half of the complex plane, and largely contained within the
unit disk Fig. 2.1(b).

Despite the need to solve Eq. (2.5) iteratively, the attraction of IMEX methods is that, under
suitable dynamical circumstances, one may employ time-steps that are as much as 100 times (or
more) greater than the maximum allowable explicit time-step. As a result, IMEX-based models can
actually run faster than explicit models provided that the number of iterations needed to solve Eq.
(2.5) is kept under control by a sufficiently effective preconditioner. The RTB test case is an example
of a dynamical scenario that can be run at a large Courant Number in an IMEX model, and thus
permits a large time-step. In [1] we described this test case and used it to show the ability of the
EBSO preconditioner to accelerate the iterative solution of Eq. (2.5) when Ã is in Schur-complement
form. Herein we will use the same test case to illustrate the ability of the PBNO preconditioner to
solve Eq. (2.5) more efficiently regardless of whether Ã is Schur-complement form or not.

Because matrix Ã is not symmetric positive definite (SPD) regardless of whether it is in Schur-
complement or not, our selection of suitable iterative solvers is limited to those that can handle
non-SPD systems. In [1] we compared the performance of GMRES [10] based on the Arnoldi process
[9, p. 165] and transpose-free BICGS [12] based on the Lanczos process [9, p. 234]. In this paper we
also include the RICH algorithm [12, p. 22]. All three of these algorithms will be evaluated on the
basis of their PBNO-preconditioned performance in a serial computing environment. The rationale
in selecting these three solvers is that, as a set, they involve diverse combinations of computational
and communication costs. For example, GMRES applies the system matrix once per iteration,
but if n is the number of iterations required for convergence, then the number of dot-products
performed by GMRES is n2/2. By contrast, transpose-free BICGS applies the system matrix twice,
but only requires 6n dot-products. Like GMRES, RICH applies the system matrix once per iteration.
However, unlike either GMRES or BICGS, RICH can be run in a dot-product-free mode, which can
be potentially advantageous when using a massively-parallel computing environment, which will be
the focus of a future paper. Appendix A describes the process by which the RICH algorithm can be
run in a dot-product-free mode.

If a linear system is to be solved only once, then the cost to construct a preconditioner prior to
its employment in the iterative solution process must be kept small. However, in many IMEX appli-
cations matrix Ã in Eq. (2.5) remains the same for hundreds to thousands of time-steps. Moreover,
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Figure 2.1. (a) Example of a positive-definite spectrum associated with a Schur-complement form of the rescaled
system matrix Ã for a 2-D CG model of the RTB test case. The model had a coarse spatial resolution consisting
of 5-by-5 elements and 5th order LGL polynomials, and employed a 2-stage ARK time-differencing scheme with the
time-step set to produce a Courant No. of 16. (b) Example of a complex spectrum for a matrix Ã associated with
a 2-D DG model of the RTB test case using the same spatial and temporal discretization schemes as in (a). The
eigenvalues of the unscaled system matrix A having the largest and smallest modulus, respectively, appear in the upper
left of each panel.

in an operational numerical weather prediction setting, matrix Ã remains unchanged for typically
many thousands of model runs. In such situations the cost to construct the preconditioner becomes
comparatively unimportant, and as a result, it becomes feasible to construct the preconditioner using
computationally more expensive methods. In [1] we showed how a NLLS algorithm could be used to
construct the EBSO preconditioner in a process that required approximately an hour of computing
time on a typical desktop PC. In this paper we show that a similar NLLS algorithm can be used to
construct the PBNO preconditioner for the RTB test case much more efficiently even if matrix Ã is
not in Schur-complement form.

3. Polynomial Preconditioning Background. Polynomial preconditioning is a well-known
(see [7] for a thorough discussion) type of explicit preconditioning in which we replace Eq.(2.5) by
the equivalent system (here using left-preconditioning)

(KÃ)x = Kb̃, (3.1)

where K is a low-order polynomial in Ã given by

K = s(Ã) =

m∑
i=0

kiÃ
i, (3.2)

and has a spectrum which approximates that of Ã−1. From a CG or DG modeling perspective,
an attractive feature of making K a polynomial in Ã is that K possesses the same degree of par-
allelization potential as the system matrix, and thus requires no additional preconditioner-specific
parallelization machinery whatsoever.

The simplest polynomial preconditioner is the Neumann preconditioner

sN (Ã) =

m∑
i=0

(I − Ã)i, (3.3)

which is based on the fact that the right-hand side of Eq. (3.3) must converge to Ã−1 as m→∞ as
long as the spectrum of Ã is contained within the open unit disk centered at (1,0). Since Neumann
preconditioners contain no user-specified parameters, they may thought of as a zero-skill benchmark
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Order k0 k1 k2 k3 k4 k5
m = 1 2 -1
m = 2 3 -3 1
m = 3 4 -6 4 -1
m = 4 5 -10 10 -5 1
m = 5 6 -15 20 -15 6 -1

Table I
Coefficient values in Eq. (3.2) for the first five Neumann polynomial preconditioners.

Order k0 k1 k2 k3 k4 k5
m = 1 5 -2
m = 2 14 -14 4
m = 3 30 -54 36 -8
m = 4 55 -154 176 -88 16
m = 5 91 -364 624 -520 208 -32

Table II
Coefficient values in Eq. (3.2) for the first five Chebyshev polynomial preconditioners when the spectrum of the

scaled system matrix Ã is positive definite and lies within the interval [0, 2].

against which other polynomial preconditioners may be compared. The coefficients of the first five
Neumann preconditioners are shown in Table I. These Neumann preconditioners will be used later
to evaluate the relative performance of the PBNO preconditioner and the Chebyshev preconditioners
(described in the next paragraph) when running the RTB problem using a Schur-complement form
CG model.

A well-known class of polynomial preconditioners is based on the requirement that the function
s( ) satisfy the linear least-squares optimization problem

k⇐ min ‖1− λsc(λ)‖w ‖p(λ)‖w ≡
∫
E

p 2(λ)w(λ)dλ, (3.4)

where:

• vector k = [k0 . . . km]T contains the optimal coefficients of polynomial sc(Ã) in Eq. (3.2),
• w(λ) is a weighting function that is nonnegative over the convex region E that encloses the

spectrum of Ã,
• and w(λ) is chosen such that function sc( ) can be assembled recursively using Chebyshev

polynomials of the first kind (hence the c subscript).

In our previous paper [1] we showed how the method described by Saad [9, p. 384-386] could be
adapted to construct these so-called Chebyshev preconditioners for application to a system matrix
with a positive definite spectrum confined to the interval [0, 2]. The coefficients of the first five of
these Chebyshev preconditioners are shown in Table II, and these preconditioners will provide an
existing-skill reference point against which to evaluate the PBNO preconditioner when running the
RTB problem using a Schur-complement form CG model.

In order to create a Chebyshev preconditioner for a system with a complex spectrum, region E in
the complex plane must be some convex form (e.g., an ellipse or polygon) that approximately encloses
the spectrum [8, 6]. This requirement introduces an element of arbitrariness into the selection of E,
particularly when dealing with a spectrum like that in Fig. 2.1(b), which has a hull that cannot be
well-represented by a convex form. As we show in the next section, the process by which the PBNO
preconditioner is constructed is completely objective and eliminates the need to select the type and
shape of the convex hull that is to enclose region E.

4. PBNO Preconditioner Development.
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4.1. Optimization Problem Formulation. Since any polynomial in Ã shares the same in-
variant subspaces that are common to Ã and Ã−1, the requirement that K approximate Ã−1 is
effectively the requirement that

σ(K) ≈ σ(Ã−1), (4.1)

or alternatively, the requirement that

σ(KÃ) ≈ σ(I). (4.2)

In an effort to adequately satisfy criterion (4.2), we will require the optimal K to be the output of
the optimization problem

Kopt ⇐ min ||σ(I −KÃ)||p, (4.3)

where the bold font σ is a vector-valued operator that extracts the eigenvalues of its argument, and
the subscript p is the index of a standard Euclidean p-norm.

Now if matrix Ã has dimensions M-by-M, and we choose a power basis form for K as shown in
Eq. (3.2), then the optimization problem (4.3) effectively becomes

kopt ⇐ min

[
M∑
i=1

|1− s(λi)λi|p
]1/p

, (4.4)

where vector kopt = [k0 . . . km]T contains the optimal coefficients of the polynomial in Eq. (3.2).
However, because of the poor behavior of power bases when doing numerical computations, we will
instead represent coefficients of preconditioner K using the form

sL(λ) =

m+1∑
i=1

ciLj(λ), (4.5)

where

Lj(λ) =

m+1∏
i=1
i6=j

(λ− ni)
(nj − ni)

, (4.6)

are mth-order Lagrange polynomials with nodal values ni located at the Chebyshev points appro-
priately translated and scaled so as to be centered in the interval [|λmin| , |λmax|]. By virtue of
representing K via Eq. (4.5), optimization problem (4.4) is replaced by

copt ⇐ min

[
M∑
i=1

|1− sL(λi)λi|p
]1/p

, (4.7)

where vector copt = [c1 . . . cm+1]T contains the optimal coefficients of the polynomial in Eq. (4.5).
Now in principle, optimization problem (4.7) provides us with a method to construct matrix K

by finding the coefficients in Eq. (4.5). However, in practice the large size of system matrix Ã makes
the optimization problem numerically intractable. Therefore, we will replace problem (4.7) with a
tractable proxy via the procedure that follows.

First we recall that the Arnoldi algorithm applied to an arbitrarily large M -by-M matrix Ã
generates the factorization

ÃQ = QH̃, (4.8)

where H̃ is an upper Hessenberg matrix of size N -by-N and N is relatively small (< 150 in this
paper). This upper Hessenberg matrix has a spectrum that we will denote by

σ(H̃) = [µ1 . . . µN ]
T
, (4.9)
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Figure 4.1. (a) As in Fig. 2.1(a), except the spectrum of Hessenberg matrix H̃ (green circles) has been included
along with the spectrum of system matrix Ã (red crosses) The dimensions Ã and H̃ respectively are M = 676 and
N = 100. Both spectra are real, but have been displaced slightly upward (red) and downward (green) to avoid overlap.
(b) As in Fig. 2.1(b), except the spectrum of H̃ (green circles) has been included along with the spectrum of Ã (red
crosses). The dimensions Ã and H̃ respectively are M = 3600 and N = 150.

and which can be quickly computed in its entirety using the QR algorithm [11, p. 211-224]. A key
feature of σ(H̃) is that it provides a good discrete approximation to the hull of the spectrum of
matrix Ã as long as N is adequately large. This property of σ(H̃) is illustrated in Fig. 4.1(a) for the
system matrix Ã associated with a CG Schur-complement form model of the RTB problem, and in
Fig. 4.1(b) for the scaled system matrix Ã associated with a DG model of the same RTB problem.

The combination of the fact that σ(H̃) contains the eigenvalues of H̃ farthest from (1, 0) on the
complex plane, and the fact that the residual polynomial

r(λ) = 1− sL(λ)λ, (4.10)

contained inside optimization problem (4.7) tends to become large for those eigenvalues farthest
from (1, 0), suggests that we can replace (4.7) with the very tractable proxy problem

copt ⇐ min

[
N∑
i=1

|1− sL(µi)µi|p
]1/p

. (4.11)

In concluding this subsection we note that if σ(H̃) is complex, then optimization problem (4.11)
must be solved using a nonlinear least squares (NLLS) approach for all values of norm index p ≥ 2.
If σ(H̃) is real, then a NLLS approach must be used for all values of p > 2.

4.2. Optimization Problem Solution. We can iteratively solve optimization problem (4.11)
for any even value of norm index p ≥ 2 using the Gauss-Newton (GN) algorithm as follows:

1. Create the vector-valued cost function

h(c) =
[
|1− sL(µ1)µ1|p/2 , . . . , |1− sL(µN )µN |p/2

]T
, (4.12)

where vector c = [c1 . . . cm+1]T contains the coefficients ci in Eq. (4.5) and the exponent
form p/2 allows for the fact that the GN algorithm minimizes the square of the norm of the
residual vector.

2. Approximate h(c) as a 1st-order Taylor series

h(c) = h(c0) + J∆c, (4.13)

where c0 is an appropriate 1st-guess1 for c, and J is a finite-difference approximated Jaco-

1For all cases in this paper we use c0 = [1 . . . 1]T , which, by virtue of the form of Eq. (4.5), makes sL(λ) = 1.
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bian matrix given by

J =

[
∂h

∂c1
,
∂h

∂c2
, . . . ,

∂h

∂cm+1

]
c=c0

. (4.14)

3. Obtain the QR factorization of the Jacobian J = QR and apply the minimum residual
criterion QTh(c) = 0 to Eq. (4.13) to obtain the normal system

R∆c = −QTh(c0), (4.15)

which is then solved for ∆c by back substitution.
4. If necessary, reduce ∆c by repeated factors of 1/2 until the descent criterion

‖h(c0 + ∆c)‖2 < ‖h(c0)‖2 (4.16)

is satisfied.
5. Replace c0 by c0 + ∆c and repeat steps 2-4 until the relative error criterion

‖∆h‖
‖h‖

< ε (4.17)

is satisfied.
6. Convert the copt obtained from Steps 1-5 into the equivalent power basis coefficient vector
kopt so that Eq. (3.2) can be used when actually applying the PBNO preconditioner (via
Horner’s Method).

In all cases we found that letting ε = 10−5 in GN convergence criterion (4.17) was sufficient to ensure
the GN algorithm produced a solution copt in optimization problem (4.11) that was of adequate
precision for use in Eq. (4.5). The number of GN iterations required to satisfy criterion (4.17)
depends on the order m of the PBNO preconditioner and the norm index p, varying from fewer than
10 for m = 1 and p = 2, to on the order of 50 for m = 9 and p = 20.2

Fig. 4.2(a)-(d) shows the effect of 5th-order PBNO preconditioners with p = 2 and p = 20 on
the spectrum of the preconditioned system matrices KÃ and KH̃ for both CG Schur-complement
form and DG form cases seen earlier in Fig. 4.1(a)-(d). The coefficients of these four PBNO
preconditioners appear in Table I of this section to permit comparison with Row 5 of Tables I and
II of Section 3 which display the coefficients of 5th-order Neumann and Chebyshev preconditioners,
respectively. In each panel of Fig. 4.2 we can see that the effect of the PBNO preconditioner is to
drive all the eigenvalues of KÃ and KH̃ closer to (1,0) on the complex plane in an effort to satisfy
criterion (4.2). Most importantly, notice in all four panels of Fig. 4.2 that the spectral hull of KH̃
(green circles) lies virtually on top of the spectral hull of KÃ (red crosses). This observation supports
the assumption that tractable optimization problem (4.11) is a suitable proxy for the intractable
problem (4.4).

By comparing Fig. 4.2(a) with 4.2(c) and Fig. 4.2(b) with 4.2(d), we can readily see that
increasing the norm index from p = 2 and p = 20 in optimization problem (4.11) results in a more
symmetric distribution of eigenvalues around (1,0). This is to be expected since increasing the p-
norm index effectively results in a heavier weighting of the least squares residual vector components
associated with the eigenvalues farthest from (1,0). We will see in Section 5 that the ability to
change norm index p will allow us to create the optimal PBNO preconditioner for each of the
GMRES, BICGS, and RICH iterative solvers that we will employ.

4.3. PBNO Preconditioner Construction and Application. For preconditioned system
matrix spectra (red crosses) shown in Fig. 4.2a-d, the resolution of the RTB problem was sufficiently
coarse so that we could actually construct matrix KÃ and extract its entire spectrum via the QR
method for comparison with the spectrum of the preconditioned Hessenberg matrix KH̃. For higher

2The range of iteration values just cited excludes the case when p = 2 and the spectrum of Ã is positive definite,
in which case optimization problem (4.11) is linear and GN converges in a single step.
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Figure 4.2. (a) Spectra for the preconditioned system matrices KÃ (red crosses) and KH (green circles) where
Ã is the same CG Schur-complement form system matrix as in Fig. (4.1a), and where K is a 5th-order PBNO
preconditioner with the norm index p = 2. (b) Spectra for the preconditioned system matrices KÃ (red crosses) and
KH (green circles) where Ã is the same DG form system matrix as in Fig. (4.1b), and where K is a 5th-order
PBNO preconditioner with the norm index p = 2. (c)-(d) As in panels (a) and (b) of this figure, respectively, except
for a PBNO preconditioner using a norm index p = 20.

Model (p Norm) k0 k1 k2 k3 k4 k5
CG (p = 2) 14.361 -58.760 102.84 -87.417 35.657 -5.5940
DG (p = 2) 3.8319 -8.0515 10.161 -7.4160 2.8788 -0.45999
CG (p = 20) 22.790 -117.92 238.63 -223.94 98.105 -16.235
DG (p = 20) 5.1638 -13.367 19.799 -16.502 7.1857 -1.2669

Table I
Coefficient values in Eq. (3.2) for the 5th-order PBNO preconditioners that generated the spectra shown in Fig

(4.2a-d).

resolution test case problems, and for any operational atmospheric prediction problem, we must
begin with Eq. (2.2) in the more numerically relevant form

LA(x) = b, (4.18)

where LA( ) is the linear operator that accomplishes the transformational action of the unscaled
system matrix A. In this case the method for constructing and applying the PBNO preconditioner
is as follows:
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1. Prior to the time integration phase of the numerical model, construct an unscaled Hessenberg
matrix H via an operator-based implementation of the Arnoldi algorithm, namely:

LA(Q) = QH. (4.19)

2. Apply the QR method to H to obtain λmax and λmax in order to construct λmid in Eq.
(2.3), which in turn enables us to create a scaled system matrix operator

LÃ( ) =
1

λmid
LA( ), (4.20)

for use during preconditioner construction and at each step of the time integration phase of
the CG and DG model.

3. Employ the method outlined in Sections 4.1 and 4.2 to determine the coefficients of the
PBNO preconditioner for the values of polynomial order m and norm index p specified by
the user. We note here that Eq. (4.8) is replaced by the operator-based form

LÃ(Q) = QH̃. (4.21)

4. After the preconditioner is constructed via Steps 1-3 above, it is then employed at each step
in the time-integration phase to solve the operator-based form of Eq. (3.1)

LK ◦ LÃ(x) = LK(b̃), (4.22)

via the particular iterative solver specified by the user.

We emphasize that for Steps 1-3 listed above, the greatest computational cost by far is incurred
in Step 1 when the matrix H is constructed via the Arnoldi algorithm, particularly if system matrix
A is large. This cost is also applicable when constructing the Chebyshev preconditioner, as is the
cost to compute the spectrum of H in Step 2. The cost to complete Step 3, which is the only step
unique to the PBNO preconditioner, is negligible compared to the cost of Step 1.

Fig. 4.3 shows the impact on the spectrum of KH̃ due to a set of PBNO preconditioners of
increasing order constructed for a DG model RTB problem with five times the spatial resolution of
the analogous coarse-resolution model having the spectra shown in Fig. 4.2. Notice the similarity
of the spectra of the unpreconditioned scaled Hessenberg matrix H̃ in Figs. 4.1(b) and Figs. 4.3(a).
Likewise, note the similarity of the spectra of the matrices KH̃ (green circles) in Figs. 4.2(d) and
Figs. 4.3(d) where in each case a 5th-order PBNO preconditioner with p = 20 was employed. Finally,
notice in Fig. 4.3(f) the high degree of axisymmetry about (1,0) exhibited by the spectrum of H̃
when a 9th-order the PBNO preconditioner is employed.

5. Results in a Serial Computing Environment. In order to adequately map out the large
parameter space associated with:

• two variants of NUMA2d (CG-Schur and DG),3

• a range of possible time-steps with Courant No. as high as 32,
• three iterative solvers (GMRES, BICGS, RICH),
• three types of polynomial preconditioners (NEUM, CHEB, PBNO),
• preconditioner order as high as 9th-order,
• and the adjustable p-norm index in PBNO optimization problem (4.11),

we initially use a coarse spatial resolution, a low order time integration scheme, and a relatively
short simulation time of 100s. The model domain is spatially discretized using a 25-by-25 element
grid and 5th-order LGL points within each element, and a 2nd-order accurate Additive Runge-Kutta
(ARK2) time integration scheme [4]. A set of six different time-steps is employed and corresponds
to a Courant No. as small as 2 and as large as 32.4 As the analysis proceeds we will include selected
results that employ 9th-order spatial resolution, higher order ARK methods, and a model simulation
time of 700s to show that conclusions based on the coarse simulation runs are justified.

3NUMA2d refers to the two-dimensional version of the NUMA model.
4A Courant No. of 32 is the largest for which the RTB problem will run to completion (i.e., bubble at top of

domain at 700s) without exceeding the explicit CFL limit.
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PBNO Order = 0   (a) PBNO Order = 1   (b) PBNO Order = 3   (c)

PBNO Order = 5   (d) PBNO Order = 7   (e) PBNO Order = 9   (f)

Figure 4.3. (a) Spectrum of the scaled Hessenberg matrix H̃ derived from a DG model of the RTB problem
using 25 × 25 elements, 5th-order LGL polynomials, two-stage ARK time differencing, and a Courant No. of 16.
The corresponding scaled system matrix have dimensions of 22, 550 × 22, 500. (b)-(f) As in panel (a), except for a
scaled preconditioned Hessenberg matrix KH̃ where the PBNO preconditioners K have the order shown in the upper
right of the panel, and where constructed using a norm index of p = 20.

5.1. Solver Performance Dependence on PBNO p-Norm Index. Recall that in opti-
mization problem (4.11) the index of the p-norm employed can be varied. The effect of changing
index p on the performance of the GMRES, BICGS, and RICH iterative solvers using PBNO pre-
conditioners of up to 9th-order is illustrated in Figs. 5.1 and Figures 5.2 for CG-NUMA2d and
DG-NUMA2d, respectively. For the CG version of NUMA2d (CG-NUMA2d), increasing the value
of index p from 2 to 10 to 20 slightly degrades the performance of GMRES (Fig. 5.1(a)-(b)), has ba-
sically negligible effect of the performance of BICGS (Fig. 5.1(c)-(d)), but significantly improves the
performance of RICH (Fig. 5.1(e)-(f)). Based on the results shown, when running CG-NUMA2d a
setting of p = 2 would be appropriate when using either the GMRES or BICGS solver, and a setting
of p = 10 would be an appropriate choice when using the RICH solver. The improved performance
of the RICH solver as norm index p increases is not surprising given that:

• the spectrum of KH̃ becomes more axisymmetrically distributed around (1,0) as index p
increases (compare Figs. 4.2(a) and (d)),

• and the convergence rate of the RICH solver is determined by the eigenvalue of KH̃ farthest
from (1,0) as shown in Appendix A.

A comparison of Figs. 5.1(b), 5.1(d), and 5.1(f), reveals several important facts:

• Although the iterations/time-step for BICGS are roughly half those of GMRES, the wall-
clock of BICGS is still greater than that of GMRES.

• Although the RICH solver is much slower than either GMRES or BICGS when PBNO
preconditioner order m is low, the RICH solver does become increasingly competitive with
the other two solvers as index m increases.

The first item above is a consequence of the fact that BICGS applies the system matrix twice
during each iteration, and the fact that GMRES’s use of an expanding Krylov-vector search space is
not a significant detriment when the number of iterations/time-step are relatively low. The second
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RICH Iterations(e) RICH Wall Clock Time(f)
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Figure 5.1. (a)-(b) Effect of PBNO preconditioner p-norm index on GMRES Iterations/Time-step and Wall
Clock Time, respectively, when running the CG Schur Complement form version of NUMA2d with a time-step
corresponding to a Courant No. of 16. (c)-(d) As in (a)-(b), except for the BICGS iterative solver. The missing
data points for PBNO order m = 0 indicates that unpreconditioned BICGS solver would not reliably converge at
every time-step. (e)-(f) As in (a)-(b), except for the RICH iterative solver. The missing data points for PBNO order
m = 0 indicates that the convergence rate of unpreconditioned RICH at each time-step was prohibitively slow.

item above is significant given that the RICH iterative solver is dot-product-free, which should
increase its competitiveness with the other solvers when we consider model performance in a parallel
computing environment in future work.

For DG-NUMA2d, increasing the value of index p from 2 to 10 to 20 moderately improves the
performance of GMRES (Fig. 5.2(a)-(b)) and BICGS (Fig. 5.2(c)-(d)), and significantly improves
the performance of RICH (Fig. 5.2(e)-(f)). Based on the results shown, when running CG-NUMA2d
a setting of p = 10 would be appropriate when using either the GMRES or BICGS solver, and a
setting of p = 20 would be an appropriate choice when using the RICH solver. In comparing Figs.
5.2(b), 5.2(d), and 5.1(f), it is important to note that the wall-clock time of the RICH solver (with
p = 20) is of the same order as both GMRES and BICGS regardless of PBNO preconditioner order
m. A summary of the p-norm index values used in all subsequent runs of NUMA2d are provided in
Table I.

5.2. PBNO Performance Relative to Existing Preconditioners. A comparison of the
performance of PBNO preconditioners up to 9th-order relative to analogous Neumann (NEUM) and
Chebyshev (CHEB) preconditioners is shown in Fig. 5.3(a) and (b) for low resolution 100s runs
of the Schur-complement form of CG-NUMA2d using an ARK2 time integrator. Both the CHEB
and PBNO preconditioners significantly outperform the no-skill threshold set by the corresponding
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RICH Iterations(e) RICH Wall Clock Time(f)
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Figure 5.2. (a)-(f) As in Fig. 5.1a-f, except for the DG form version of NUMA2d.

NUMA2d Variant GMRES BIGCS RICH
CG (Schur) p = 2 p = 2 p = 20

DG p = 10 p = 10 p = 20
Table I

Norm index values used in optimization problem (4.11) when constructing PBNO preconditioners for NUMA2d.

NEUM preconditioners for all polynomial orders. For all polynomial orders > 1, the PBNO precon-
ditioners achieve a greater reduction in iterations/time-step and wall clock time than do the CHEB
preconditioners. With regard to wall clock time, CG NUMA2d runs approximately 12 percent faster
when preconditioned with PBNO versus CHEB for polynomial orders ≥ 2. In Fig. 5.3(c)-(d), in
which a 3rd-order accurate (ARK3) time integrator is employed, we see qualitatively similar results,
except that in terms of wall clock time NUMA2d runs as much as 30 percent faster when a PBNO
preconditioner is used compared to a CHEB preconditioner. We also made the same comparison
using a 4th-order accurate (ARK4) time integrator (not shown) and obtained results that were very
similar to those shown for ARK3 in Fig. 5.3(c)-(d). Similar results were obtained using various
backward differencing time integrators as well, with PBNO outperforming CHEB in all cases. Fig.
5.4 provides results analogous to Fig. 5.3, except that model resolution has been increased by using
9th-order LGL nodal points. The comparison clearly shows that the improvement in GMRES per-
formance achieved by PBNO preconditioners compared to CHEB and NEUM preconditioners is not
dependent on model resolution.

In comparing the wall clock time results in Figs. 5.3(b)-(d) and 5.4(b)-(d), it is evident that the
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GMRES Iterations (ARK3)(c) GMRES Wall Clock Time (ARK3)(d)
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Figure 5.3. (a)-(b) Iterations/time-step (a) and wall clock time (b) achieved by various orders of the NEUM,
CHEB and PBNO preconditioners when employed in the lower spatial resolution Schur-complement form of CG-
NUMA2d running at a Courant No. of 32, employing an ARK2 time integrator, and running for 100s of model
simulation time. (c)-(d) As in (a) and (b), except for using a 3rd-order accurate (ARK3) time integrator.

CG-NUMA2d runs the fastest in a serial computing environment when 1st-order preconditioning
is used, and that there is little difference between the performance of the 1st-order CHEB and
PBNO preconditioners. However, it is important to notice, for example, in Fig. 5.3(d) that 9th-
order PBNO-preconditioned GMRES still runs much faster than unpreconditioned GMRES, and
runs significantly faster than CHEB-preconditioned GMRES. In addition, as preconditioner order is
increased from 1 to 9, PBNO-preconditioned GMRES wall clock time increases by only a factor of
122/83 = 1.45, whereas PBNO-preconditioned GMRES iterations decrease by a significantly larger
factor of 52/16 = 3.25. This observation combined with the fact that the number of dot products
computed in GMRES is proportional to the square of the number of iterations, means that there is
the potential for a reduction in wall clock time as PBNO order is increased when employing GMRES
in a parallel computing environment.

Runs for CG-NUMA2d were also performed using BICGS with the NEUM, CHEB, and PBNO
preconditioners (not shown). The results were roughly analogous to the GMRES results in Figs.
5.4(c), but have the following differences:

• The RTB problem would not run to completion (i.e., to 100s) when using the BICGS solver
and an odd order NEUM preconditioner. By contrast, we can see in Fig. 5.4(b) and (d)
that the RTB problem ran more slowly when using the GMRES solver and an odd order
NEUM preconditioner compared to the runs using NEUM preconditioners of the next lower
or higher even order.

• The performance of BICGS preconditioned with PBNO and CHEB is virtually the same.
However, the wall clock times are about 10 percent slower than for PBNO-preconditioned
GMRES for all preconditioner orders greater than 2.

In concluding this subsection, we note that preconditioner performance comparisons such as
those shown in Figs. 5.3 and 5.4 for CG-NUMA2d cannot be made for DG-NUMA2d for several
reasons. Firstly, DG-NUMA2d would not reliably run to completion when preconditioned with
the NEUM preconditioner presumably due to fact that some of the eigenvalues of Ã are located
very nearly on the edge of the unit disk centered at (1,0) as seen in Fig. 2.1b. Secondly, an
objective head-to-head comparison of a CHEB and PBNO preconditioner for a system matrix with
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GMRES Iterations (ARK3)(c) GMRES Wall Clock Time (ARK3)(d)
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Figure 5.4. (a)-(d) As in Fig. 5.3(a)-(d), expect for running NUMA2d at a higher spatial resolution employing
9th-order LGL polynomials.

a complex spectrum is problematic since the CHEB preconditioner must be constructed employing a
subjectively chosen (e.g., either elliptical or polygonal) continuous and convex hull that encloses the
spectrum of the Hessenberg matrix H̃, whereas the PBNO preconditioner is based on an objective
and effectively discontinuous and non-convex spectral hull represented by the actual spectrum of
H̃. Since in the comparisons above the performance of the PBNO preconditioner either exceeds (for
GMRES) or matches (for BICGS) the performance of the CHEB preconditioner when used in CG-
NUMA2d, all subsequent results involving DG-NUMA2d will involve only the PBNO preconditioner.

5.3. Relative Performance of PBNO-preconditioned Solvers. The effect of PBNO pre-
conditioners on the iterations/time-step and wall clock time of GMRES, BICGS, and RICH solvers
as a function of RTB problem Courant No. are shown in Figs. 5.5 and 5.6 for CG-NUMA2d and
DG-NUMA2d, respectively. For the CG case, comparing Figs. 5.5(b),(d) and (f) reveals that in
terms of minimum wall clock time in a serial computing environment:

• For GMRES a 1st-order preconditioner is optimal for Courant Nos. > 8.
• For BICGS using no preconditioner at all is optimal for all Courant Nos.
• For RICH higher order preconditioning becomes increasingly beneficial as the Courant No.

increases, and results in the simple RICH solver becoming increasingly competitive with the
more sophisticated GMRES and BICGS solvers.

By contrast, for the DG case, comparing Figs. 5.6(b),(d) and (f) reveals that in terms of
minimum wall clock time all three solvers run more efficiently when higher order preconditioning is
combined with large Courant No. In particular:

• when employing GMRES the model runs the fastest when a 9th-order preconditioner is
combined with the maximum Courant No. of 32.

• when employing BICGS the model runs the fastest when a 7th-order preconditioner is com-
bined with the maximum Courant No. of 32.

• when employing RICH the model runs the fastest when a 9th-order preconditioner is com-
bined with the maximum Courant No. of 32.

When looking over Figs. 5.5(b), (d) and (f) and 5.6(b), (d) and (f) it is clear that the lowest
wall clock time tends to occur when using the largest Courant No. of 32 (and thus longest time-
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BICGS Iterations(c) BICGS Wall Clock Time(d)
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RICH Iterations(e) RICH Wall Clock Time(f)
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Figure 5.5. (a)-(b) Iterations/time-step (a) and wall clock time (b) as a function of Courant No. exhibited
by CG-NUMA2d preconditioned with the orders of the PBNO-preconditioner shown in the legend. For these results
CG NUMA2d employed 5th-order LGL polynomials, an ARK2 time integrator, and RTB simulation time of 100s.
(c)-(d) As in (a) and (b), except for using the BICGS solver. The missing data point for 0-order preconditioning
( i.e., unpreconditioned) and a Courant No. of 32 indicates that CG NUMA2d would not run to completion when
employing the BICGS solver. (e)-(f) As in (a) and (b), except for using the RICH solver.

step). However, the preconditioner order needed to achieve the lowest wall clock time when running
the model at Courant No. 32 varies with the iterative solver used and whether a CG or DG
model is employed. Fig. 5.7 provides an example of the PBNO-preconditioned CG and DG model
performance when running at the maximum Courant No. of 32 and employing an ARK4 time
integrator. With regard to iterations/time-step (Fig. 5.7(a) and (c)), important points to note are
that:

• for the CG model the performance of the RICH solver is much worse than the GMRES and
BICGS solvers for low PBNO order, but becomes increasingly competitive as PBNO order
increases,

• for the DG model the performance of the RICH solver is only slightly worse than the GMRES
and BICGS solvers for low PBNO order, but nearly matches the performance of GMRES
for PBNO order greater than 4,

• and, although BICGS has significantly fewer iterations/time-step than GMRES in both the
CG and DG models, it must be remembered that this advantage tends to be offset to some
degree by the fact BICGS applies the preconditioned system matrix twice at each time step.

With regard to wall clock time (Fig. 5.7(b) and (d)), important points to note are that:
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BICGS Iterations(c) BICGS Wall Clock Time(d)
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RICH Iterations(e) RICH Wall Clock Time(f)
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Figure 5.6. (a)-(f) As in Figs. 5.5(a)-(f), except for using DG-NUMA2d.

• CG model wall clock time tends to slow down with increasing PBNO order using either
the GMRES or BICGS solver; however, the rate of slowdown is modest compared to the
proportionally larger reduction in iterations/time-step.

• in the CG model the performance of the RICH solver is much worse than the GMRES and
BICGS solvers for low PBNO order, but becomes increasingly competitive as PBNO order
increases,

• in the DG model 1st-order preconditioning of GMRES or BICGS results in a dramatic
reduction in wall clock time compared to unpreconditioned GMRES (the only solver able
to run unpreconditioned in the DG model),

• in the DG model the performance of all three solvers is very similar for PBNO order m ≥ 2
and we can see that a modest reduction in wall clock time occurs as PBNO order increases,

• and, the competitiveness of the RICH algorithm for PBNO order m ≥ 2 is particularly
noteworthy given that the algorithm is run in a dot-product-free mode in NUMA2d.

5.4. Long-Duration, High-Resolution Simulation Comparisons. As mentioned earlier,
to expeditiously map out the large parameter space associated with multiple versions of NUMA2d,
preconditioners, solvers, etc, we initially presented results based on coarse spatial resolution, a low-
order time integration scheme, and relatively short simulation time of 100s. To ensure that PBNO
preconditioning up to order m = 9 produces stable and consistent results for longer RTB simulation
times, we ran the problem out to 700s at which time the bubble impacts the top of the domain. For
these runs in both the CG and DG models we employ a problem domain that is spatially discretized
using a 25-by-25 element grid and 9th-order LGL points within each element, and we use a 3nd-order
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2−D NUMA DG Iterations(c) 2−D NUMA DG Wall Clock Time(d)
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Figure 5.7. (a)-(b) Comparison of iterations/time-step (a) and wall clock time (b) as a function of PBNO
preconditioner order for the Schur-complement form of CG-NUMA2d running at the maximum Courant No. of 32
and using the GMRES (green circles), BICGS (blue squares), and RICH (red triangles) iterative solvers. (c)-(d) As
in (a)-(b), except for DG-NUMA2d. Missing data points in DG results indicates that the model would not run to
completion using that particular combination of iterative solver and PBNO order. For both the CG and DG results
the model employed 5th-order LGL polynomials, an ARK4 time integrator, and RTB simulation time of 100s.

accurate Additive Runge-Kutta (ARK3) time integration scheme 5.
Potential temperature fields that result from running the Schur-complement form of the CG

model using the above specifications and employing unpreconditioned GMRES, 9th-order PBNO-
preconditioned GMRES, BICGS, and RICH are depicted in Fig. 5.8(a)-(d), respectively. The fields
shown are at the 600s point in the 700s simulation, which is approximately the time when the bubble
attains its maximum upward speed. As a result, 600s is the time when the advective Courant No.
reaches its maximum and comes very close to the advective CFL limit. It is visually evident that
all four runs closely reproduce the fine structure of the rising bubble. The small values of |∆T |max
(described in the caption) shown in Fig. 5.8(b)-(d) provide numerical confirmation that 9th-order
preconditioning of the GMRES, BICGS, and RICH solvers is not causing any significant dispersion
or phase lag relative to the unpreconditioned GMRES field (Fig. 5.8(a)). A comparison of wall clock
time values in the lower right of each panel shows that relative to unpreconditioned GMRES:

• preconditioned GMRES is running ≈ 1.32 times faster,
• preconditioned BICGS is running ≈ 1.21 times faster,
• and preconditioned dot-product-free RICH is running ≈ 2.20 times slower.

A comparison of average iterations/time-step values in the upper right of each panel of Fig. 5.8
shows that relative to unpreconditioned GMRES:

• preconditioned GMRES uses ≈ 12.0 fewer iterations,
• preconditioned BICGS uses ≈ 20.8 fewer iterations,
• and preconditioned RICH uses ≈ 3.05 fewer iterations.

Potential temperature fields obtained from the DG-NUMA2d that are analogous to those in

5The total number of grid points in this simulation is 50,625 with each grid point having 4 variables for a total
of 202,500 degrees of freedom. Using a time-step of dt=0.148287 means that the linear system has to be solved
700·k
dt

= 14, 161 times during the 700s simulation, where k=3 denotes the number of Runge-Kutta stages used in the
ARK method.
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Figure 5.8. (a)-(d) Potential temperature fields for the RTB test case at 600s in a 700s simulation time run
of the Schur-complement CG-NUMA2d. Model setup specifications are as described in the text. The heading on
each panel identifies the iterative solver and order of PBNO preconditioning employed. Iterations/time-step and wall
clock time in seconds appears in the upper and lower right of each panel, respectively. The value in the upper left of
panel (a) is the maximum potential temperature in the bubble. The value in the upper left of panels (b)-(c) is the
infinity norm of the difference between the unpreconditioned GMRES potential temperature state vector in (a) and
the respective potential temperature state vector in panels (b), (c), and (d).

Fig. 5.8(a)-(d) are shown in Fig. 5.9(a)-(d). Again, it is visually evident that all four runs closely
reproduce the fine structure of the rising bubble. The small values of |∆T |max shown in Fig. 5.9(b)-
(d) provide numerical confirmation that 9th-order preconditioning of the GMRES, BICGS, and
RICH solvers is not causing any significant dispersion or phase lag relative to the unpreconditioned
GMRES field (Fig. 5.9(a)). A comparison of wall clock time values in the lower right of each
panel shows that relative to unpreconditioned GMRES (which is the only solver that runs without
preconditioning in DG NUMA2d):

• preconditioned GMRES is running ≈ 3.27 times faster,
• preconditioned BICGS is running ≈ 2.761 times faster,
• and even preconditioned dot-product-free RICH is running ≈ 1.90 times faster.

A comparison of average iterations/time-step values in the upper right of each panel of Fig. 5.9
shows that relative to unpreconditioned GMRES:

• preconditioned GMRES uses ≈ 8.11 fewer iterations,
• preconditioned BICGS uses ≈ 13.1 fewer iterations,
• and preconditioned RICH uses ≈ 4.08 fewer iterations.

6. Conclusion. We have introduced a method for constructing a polynomial preconditioner
using a nonlinear least squares (NLLS) algorithm and have shown that this polynomial-based NLLS-
optimized (PBNO) preconditioner significantly improves the performance of 2-D continuous Galerkin
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Figure 5.9. (a)-(d) As in 5.8, except for DG-NUMA2d.

(CG) and discontinuous Galerkin (DG) fluid dynamical research models when running the rising bub-
ble (RTB) test case using implicit-explicit time integrators. When employed in a serially computed
Schur-complement form of the 2-D CG model with positive definite spectrum, the PBNO precondi-
tioner achieves greater reductions in GMRES iterations and model wall-clock time compared to the
analogous linear least-squares-derived Chebyshev polynomial preconditioner. Whereas constructing
a Chebyshev preconditioner to handle the complex spectrum of the DG model would introduce an
element of arbitrariness in selecting the appropriate convex hull, construction of a PBNO precon-
ditioner for the 2-D DG model utilizes precisely the same objective NLLS algorithm as for the CG
model. As in the CG model, the DG model with PBNO preconditioner achieves significant reduction
in GMRES iteration counts and model wall-clock time. Comparisons of the ability of the PBNO
preconditioner to improve CG and DG model performance when employing BICGS and RICH have
also been included. In particular, we have shown that higher order PBNO preconditioning of RICH
(which is run in a dot product free mode) makes the algorithm competitive with GMRES and BICGS
in a serial computing environment, especially when employed in a DG model. Because the NLLS-
based algorithm used to construct the PBNO preconditioner can, without modification, handle both
positive definite and complex spectra, we believe that the PBNO preconditioning approach is, for
certain types of problems, an attractive alternative existing polynomial preconditioners based on
linear least-squares methods.

In future work we plan to evaluate the performance of the PBNO preconditioned GMRES,
BICGS, and dot-product-free RICH solver in implicit-explicit and fully implicit CG and DG versions
of the three-dimensional NUMA model that are under development for use in massively parallel
computing environments. The current study described in this work has employed the serial two-
dimensional version of NUMA to allow us to focus our efforts on preconditioner formulation. The
next study will take place on the full three-dimensional NUMA model on large core-count computing
platforms; however, the emphasis of that future work will be entirely on the implementation and
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scalability of the model since the method for constructing the PBNO preconditioner will remain
unchanged.
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Appendix A. Dot-Product-Free Richardson Iteration.
As described in [12, p. 22], the Richardson iteration for solving Eq. (2.5) is defined by the

solution update equation

xn+1 = xn + rn, (A.1)

where residual vector rn is given by

rn = b̃− Ãxn. (A.2)

Appropriately combining Eq. (A.1) and Eq. (A.2) results in the residual update equation

rn = (I − Ã)rn−1, (A.3)

or after n− 1 recursive substitutions

rn = (I − Ã)nr0, (A.4)

which we can write more concisely as

rn = Bnr0. (A.5)

Now to determine both the sufficient condition for rn → 0 as n → ∞ as well as a lower limit
on the rate of convergence we proceed as follows. First we expand the initial residual vector r0 in
terms of the normalized eigenvectors vi of matrix B

r0 =

M∑
i=0

civi, (A.6)

and substitute Eq. (A.6) into Eq. (A.5) giving

rn = Bn
M∑
i=0

civi, (A.7)

or equivalently,

rn =

M∑
i=0

ciλ
n
i vi, (A.8)

where here the λi’s are the eigenvalues of B. From the form of Eq. (A.8) it is clear that if |λi| < 1 ∀ i
(e.g., as in Fig. 2.1a), then rn → 0 as n→∞. Now, if we denote the largest eigenvalue of B by λρ
and its associated eigenvector by vρ, then the slowest possible rate of convergence will occur when
Eq. (A.8) simplifies to

rn = ‖r0‖λnρvρ. (A.9)

That is, the slowest convergence occurs when r0 projects solely onto the eigenvector of matrix
B associated with the eigenvalue λρ that determines the spectral radius of B. Recall that since

B = I − Ã, λρ is also the eigenvalue of I −A farthest from (1, 0).
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Next, taking the norm of both sides of Eq. (A.9) and dividing both sides by ‖r0‖ gives

‖rn‖
‖r0‖

= |λρ|n, (A.10)

where the left-hand side gives the relative residual after the nth Richardson iteration. Finally, if an
iterative solver relative residual stopping criterion is specified as

‖rn‖
‖r0‖

≤ ε, (A.11)

then substituting criterion (A.11) into Eq. (A.10) and solving for n gives

n =
log(ε)

log |λρ|
, (A.12)

as the number of Richardson iterations required to satisfy residual reduction criterion (A.11).6 A
final point to emphasize here is that although the analysis above regards λρ as the largest eigenvalue

of I − Ã, in practice λρ is obtained from I − H̃, since I − Ã cannot be constructed for large systems,

and the spectral radius of I − H̃ very closely approximates the spectral radius of I − Ã.
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